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Abstract 
W e  describe  techniques  to  optimally  select  land- 

marks in order  to  perform  mobile  robot  localization  by 
matching  terrain  maps.   The  method  is  based upon  a 
maximum-likelihood  robot  localization  algorithm  that 
efficiently  searches  the  space of possible  robot  posi- 
tions. W e   u s e  a  sensor  error  model  to  estimate  the 
probability  distribution  of  the  terrain  expected  to be 
seen  from  the  current  robot  posit ion.   The  estimated 
distribution  is  compared  to  a  previously  generated  map 
of the  terrain  and  the  optimal  landmark  is  selected 
by  minimizing  the  predicted  uncertainty in the lo- 
calization.  The  landmark  selection  algorithm  can be 
used to  generate  a  sensor  uncertainty  field  for  use  by 
the robot’s  planning  component.  Experiments  indicate 
that  landmark  selection  improves  not  only  the  localiza- 
t ion  uncertainty,  but also the likelihood of  success. 

1 Introduction 
In the localization  process, a robot  must decide 

what  landmarks to  use in  order to determine where 
it is. Robots that use sensors  with a limited field-of- 
view (for example, a rover with  stereo  cameras)  must 
decide where to  place the sensor(s) in order to  opti- 
mize the ability of robot  to perform  localization. 

Several recent  papers have discussed strategies for 
sensor placement  or  landmark selection for use in nav- 
igation or localization. A common approach is to 
consider which landmarks, from a pre-determined  set 
of landmarks, will  yield the best localization result. 
Sutherland  and  Thompson [ll] developed one of the 
earliest  methods for landmark  selection.  They  applied 
heuristic  functions to  select a landmark  triple from the 
set of such  triples that is  likely to yield a good localiza- 
tion  result.  Greiner  and  Isukapalli [2] learn  a  function 
to  select landmarks that minimize the expected local- 
ization  error. A related  technique is  given by Thrun 
[13], who trains a neural network to learn  landmarks 
that optimize the localization  uncertainty. 

Yeh and Kriegman [14] select the subset of fea- 
tures from a set of possible features that minimizes 
a Bayesian cost of localization. Deng et al. [l] select 

a set of landmarks  in  order  to minimize the cost of 
sensing over a path segment.  Murphy e t  al. [6] first 
determine which landmarks  are always visible over 
some workspace. Heuristics are used to select some 
set of triples of landmarks.  The  best  triple is selected 
through  experimentation by a robot. Sim and Dudek 
[9] consider image locations  with  high edge density  as 
possible landmarks, which are represented using an 
appearance-based  method.  Landmarks are  detected 
by matching in the image  subspace and  the resulting 
estimates  are combined in  a  robust  manner.  Little e t  
al .  [4] find stable  landmarks by first  detecting  image 
corners. The corners that lie on depth discontinuities 
are eliminated using stereo vision. 

Each of these  papers considers a problem where 
landmarks  are selected from a  pre-determined set of 
possible landmarks.  Research that does  not  assume 
a pre-determined  set of landmarks  includes work  by 
Simhon and Dudek [lo]. They choose regions in which 
good metric  maps  can  be  established  according to  
a distinctiveness  measure.  Grudic and Lawrence 131 
learn a mapping between an image and  the  robot lo- 
cation,  but  they do not  address  the problem of where 
,to best place the camera to  obtain  the image. 

Little of the research to  date can  be successfully ap- 
plied to localization in  unstructured  outdoor  terrain, 
which  is the problem that we address. We describe  a 
technique that selects the best  landmark to  view for lo- 
calization knowing only an elevation map of the  terrain 
and  an  estimate of the robot’s  position. We assume 
that  the robot is equipped  with a limited field-of-view 
(FOV) range  sensor,  such as sonar  or  stereo  cameras. 
Our  method selects the position to aim the range sen- 
sor in  order to  optimally  perform  localization  in the 
unstructured  three-dimensional terrain. 

The  landmark selection technique that we use is 
based  upon  performing  uncertainty  estimation using a 
maximum-likelihood robot  localization  method [7, 81. 
Prior to performing  localization, the robot  analyzes 
the  terrain in the global map  to select a localization 
target, which is the position  in the  terrain  that  the 
robot senses in  order to generate  a local map  to com- 
pare  against the global map. We desire  a  location that 
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has very distinctive terrain  and  thus allows the local- 
ization to  be  performed  with a very low uncertainty. 
This  assumes that  the error in the robot  position is not 
so large that  the localization target will be outside of 
the view of the  robot when it  attempts  to sense this 
location. Active vision techniques  can  be used if, after 
the robot  attempts  to sense the localization target, no 
distinctive terrain is seen. 

The localization target is determined by estimating 
the amount of error  present  in the global map,  as well 
as  the amount of error  expected from sensing the ter- 
rain at the  robot's  current position.  These  errors are 
encoded in a probability map of the  terrain expected 
to  be seen by the  robot.  Each cell in  this  map contains 
an  estimate of the probability that  the cell  will be seen 
as occupied by the robot if the robot  performs sens- 
ing  with  the cell in the field-of-view. By treating  this 
probability map  as a terrain  map, we can  apply pre- 
viously developed uncertainty  estimation techniques . 
[7] to predict the uncertainty that will occur for any 
target in the probability map.  The location  with the 
lowest predicted  uncertainty is selected as  the local- 
ization target. 

niques can  be applied to determining  a  sensory uncer- 
tainty field for the  robot.  The sensory  uncertainty 
field is a concept  introduced by Takeda et al. [12] 
that measures the expected  distribution of errors in 
the robot  position as  the  robot moves through some ' 

environment,  performing  sensing at some  interval  in 
order to  improve  localization. Given the  uncertainty 
estimation  and  target selection methods, we can de- 
termine the expected  localization  uncertainty for any 
robot position  in the environment. 

These  techniques have been applied to localization 
for Rocky 7, which is a research  prototype for Mars 
exploration and science operations.  In  addition to  
body-mounted  stereo  cameras on the front  and back, 
Rocky 7 has a stereo  pair of cameras on a  retractable 
mast  that allows it survey the  terrain. See  Figure 1. 
We thus  concentrate on  localization using stereo  range 
data. However, most of this discussion applies equally 
well to  other range  sensors.  Experiments on Rocky 7 
and  with  synthetic data indicate that  the landmark se- 
lection not only decreases the robot's  localization un- 
certai&,y, but also  increases the probability of achiev- 
ing  a  qualitatively  correct  localization  result. 

In  addition to  improving  localization,  these tech- . 

2 Terrain  matching 

The basic  localization  technique that we use is to  
compare a map  generated at the current  robot  position 

Figure 1: The  Rocky 7 Mars rover  prototype in the JPL 
Mars  yard  with  its  mast  deployed. 

(the local map)  to a previously generated  map of the 
environment (the global map)  [8]. This technique is 
reviewed here. 

We generate  both  the local map  and  the global map 
(which may  be the combined result of previous local 
maps) using stereo vision on-board the  robot.  The 
range image is converted into a digital  elevation map 
under the assumption that we know the robot orien- 
tation  through  other sensors. To further simplify the 
problem, we use a high-pass filter  on the heights so 
that  the search for the robot  position needs to  be per- 
formed only in the 11: and y directions. This repre- 
sentation is then converted into a three-dimensional 
occupancy  grid. 

2.1 Map similarity measure 

We formulate the  map  matching problem  in terms 
of maximum-likelihood estimation. A convenient set 
of measurements that can  be used for this problem are 
the distances from the occupied cells in the local map 
to their closest occupied cells in the global map. De- 
note  these  distances O f ,  ..., 0," for the  robot position 
X .  The likelihood function for the  robot position  can 
be  formulated  as the product of the probability  distri- 
butions of these  distances. For convenience, we work 
in  the In L ( X )  domain: 

n 

In L ( X )  = lnp(Df)  (1) 

For the uncertainty  estimation to  be  accurate,  it is 
important  that we use a probability  distribution func- 
tion (PDF)  that closely models the sensor  uncertainty. 

i=l 



This  can be accomplished using a PDF  that is the 
weighted sum of two  terms: 

The first term describes the error  distribution when 
the cell is an inlier (in the sense that  the  terrain po- 
sition  under  consideration in the local map also exists 
in the global map).  In  this case, DX is a combination 
of the errors  in the local and global maps at  this po- 
sition.  In the absence of additional  information with 
respect to  the sensor error, we approximate p l ( D X )  
as  a  normal  distribution: 

The second term describes the error  distribution 
when the cell is an outlier. In  this case the position 
represented by the cell in the local map does not  ap- 
pear  in the global map (e.g.  due to range shadows or 
stereo  outliers).  In  practice, we have found that mod- 
eling this  term  as a constant is both convenient and 
effective [7]. 

p2 (DX)  = K (4) 

Although, p 2 ( D X )  is not a  probability  distribution (it 
does not  integrate  to  one), using the expected  proba- 
bility  density for a measurement  generated by a ran- 
dom  outlier  point yields excellent results: 

0 3 0 3  

K = s _ , I ,  p ( D T ) 2 d x d y  (5) 

This value can  be  estimated quickly through  examina- 
tion of the Euclidean  distance  transform of the map. 

In  Equation (2), a is the probability that any  par- 
ticular cell in the local map is an inlier. For our oc- 
cupancy  grids, we assume that  this value is relatively 
large (a  = 0.95). In  practice, the localization is in- 
sensitive to  the value of this variable. Finally, CJ is 
the  standard deviation of the measurements that  are 
inliers. This value can  be determined from the char- 
acteristics of the sensor, or it  can  be  estimated em- 
pirically by examining  real data, which is the method 
that we have used for localization  on Rocky 7. 

2.2 Uncertainty estimation 

We determine the uncertainty in the localization es- 
timate by fitting a parameterized  surface to  the likeli- 
hood  function in the neighborhood of the highest  peak 
[7]. Since the likelihood function  measures the proba- 
bility that each position  in the pose space is the actual 
robot  position,  the  uncertainty  in  the localization is 

measured by the  rate at which the likelihood function 
falls off from the peak. 

We assume that  the likelihood function can be  ap- 
proximated as a normal  distribution  in the neighbor- 
hood around the peak  location. Fitting such a normal 
distribution to  the computed likelihoods yields both 
an  estimated variance in the localization estimate  and 
a subpixel  estimate of the peak  location.  While the 
approximation of the likelihood function  as a normal 
distribution  may  not always be ideal, it yields a good 
fit to  the local neighborhood around  the peak and  our 
experimental  results  indicate that very accurate re- 
sults  can  be achieved under  this  assumption. 

We fit the peak  in the likelihood function  with: 

where k = 1 
2nu,o, , f i  , p ,  and pY represent the sub- 

pixel position  estimate, u, and cy are  the  standard 
deviations along the axes,  and p describes the orienta- 
tion of the axes  with  respect to  the global  coordinate 
frame. The function is fit using the peak value and  the 
eight neighboring values using a least-squares  criterion 
in the log-likelihood domain. 

In addition to estimating the uncertainty  in the lo- 
calization  estimate, we can use the likelihood scores 
to estimate the probability of a failure to  detect the 
correct  position of the robot [7]. This is particularly 
useful when the  terrain yields few landmarks  or  other 
references for localization and  thus  many positions  ap- 
pear similar to  the robot. 

3 Probability mapping 

In  order to predict the uncertainty achievable by 
sensing some location  (or  combination of locations), 
we make a probabilistic  prediction of the appearance 
of the  terrain  to  the sensor.  Each cell in  this proba- 
bilistic map  stores a  probability estimate  that  the cell 
will be seen as occupied in the sensed  map. We call 
this the probability  mapping of the  terrain.  This  map- 
ping should  encompass the errors  present both  in  the 
generation of the global map  and  the expected  errors 
in the new local map. 

For the case of stereo vision, Matthies [5] has 
found that  the errors  are well approximated by a two- 
dimensional normal  distribution  with the major  axis 
aligned away from the cameras. We thus convolve the 
global map  with two normal  distributions,  one  repre- 
senting the  error  in  the global map  and one  represent- 
ing the error  in the local map. Note, however, that 
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the error in the  map is a  function of the location be- 
ing  sensed. The expected  error grows with the square 
of the distance to  the camera. We thus allow the width 
of the normal  distributions to vary  with the position 
in the environment. 

Our  position-variant  spreading  function is  given  by 
Equation (7) above.  In this  equation, &[x + i] and 
E, [y + j] are  the expected standard deviations at the 
location (z+i, y+ j ) ,  and O[x+i, y+j ]  is the orientation 
of the distribution (i.e. the direction of the sensor 
position  with  respect to  ( x  + i ,  y + j )  when the  map is 
created). 

To estimate  the  error  in  the global map, we use: 

w w  

z=-w y=-w 

where M ( x ,  y)  is the global map,  2W + 1 is the size of 
the convolution window, and N ( x ,  y; i ,  j )  is the distri- 
bution  described  above.  Incorporating the expected 
error in the local map, we get: 

w w  
p( i , j )  = P G ( z + i , Y f j ) N ( z , y ; i , j ) .  (9) 

x.=-w y=-w 

Of course, the instances of N ( z ,  y; i ,  j )  in (8) and 
(9) will be somewhat different since the expected stan- 
dard deviations and  orientations will be different for 
the points in the global map versus the local map. 

4 Landmark  selection 

Given the probability  mapping of the  terrain, we 
can now estimate  the  uncertainty  that will result from 
pointing the  range sensor at some location in the envi- 
ronment  and performing  localization using the visible 
terrain.  This is performed by treating  the correspond- 
ing terrain  patch  in  the probability  mapping  as the 
local map  and using the uncertainty  estimation  equa- 
tions that were previously derived [7]. 

In  our  implementation, we approximate the general 
normal  distributions used to  model the sensor error 
as  rotationally  symmetric 2-D normal  distributions. 
While the error  due  to  stereo vision is much greater 
along the direction  parallel to  the camera  axes,  error 

in the robot’s knowledge of its  orientation will yield 
additional  errors  in the perpendicular  direction. Fur- 
thermore,  our  experiments  indicate that  the precise 
shape of the distribution used does not have a large 
effect on the landmark  selected.  On the other  hand, 
it is crucial to use a wider and  flatter  distribution at 
locations further from the sensor,  in  order to  model 
the increase in error  with  distance. We must  thus 
continue to  vary the distribution as a function of the 
location  in the space. The use of rotationally  symmet- 
ric normal  distributions makes the function  separable 
and we can  thus perform the convolutions efficiently 
by treating  the x and y directions  sequentially. 

We can  make the  computation even more efficient 
by discretizing the space of allowable standard devia- 
tions and pre-computing the normal  distributions cor- 
responding to them.  In  our  implementation, we select 
ten  standard deviations  (related by powers of &). 
For each position  in the space, we select the distribu- 
tion  with the closest standard deviation to  the desired 
value. This  approximation allows the probability  map 
to  be  computed quickly upon  demand for a region of 
the  terrain  map. 

Finally, we use dynamic  programming to compute 
the likelihood function from Section 2.1 for each of 
the  terrain regions considered as a possible landmark 
for performing  localization.  This is performed at the 
optimal localization position and  the neighboring lo- 
cations in the pose space  in  order to  apply the un- 
certainty  estimation  techniques  from  Section 2.2. The 
terrain  landmark yielding the lowest localization  un- 
certainty is selected as  the localization target. 

5 Results 

We have tested  these  techniques  in  several experi- 
ments using real and  synthetic  data. An example US- 

ing a synthetically  generated elevation map is shown 
in Figure 2. This case models a scenario where the 
robot is moving in a terrain consisting of rocks of var- 
ious sizes, like the  terrain a rover would encounter  on 
the surface  on  Mars. Of course, the positions  near 
large rocks are considered to  be very good targets,  as 
shown by the uncertainty scores represented by Fig- 
ure  2(b).  The  target  that is chosen is a position that 

, 
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Figure 2: Landmark  selection  example.  The  boxed X’S  

are  the  (interchangeable)  robot  beginning  and  ending  po- 
sitions.  The  selected  target  region  is  marked  by a larger 
box. (a) Digital  elevation  map.  (b)  Estimated  uncertain- 
ties for landmarks  centered  at  each  location.  (c)  Three- 
dimensional  map. 

contains  not only a  large rock, but also  smaller rocks 
that  are also useful in  performing the localization. 

In order to  test  the localization  performance when 
using the  target selection techniques, we simulate lo- 
calization  problems by sampling  local  maps from the 
distribution specified by the probability  map of the 
terrain  and  then performing  localization  against the 
global map.  Our experiment  selected robot positions 
at random from the  terrain shown in  Figure 2. We 
next  performed target selection and, finally, localiza- 
tion using the selected target.  In  addition, we tested 
localization using the  target at the position  directly 
between the robot  starting  and ending  positions, and 
eight other  targets on an evenly space  grid  around this 
position. 

The results of this experiment are  dramatic.  When 
target selection was used,  localization  found the qual- 
itatively  correct  position  in 97.8% of the cases. How- 
ever, when target selection was not used, the local- 
ization succeeded in only 29.5% of the trials, since 
much of the  terrain provides little useful information 
for localization.  In  addition, the successful cases were 
15.3% more  accurate when target selection is used. 
This  experiment thus  demonstrates a case where tar- 
get selection is not only useful in  reducing the local- 
ization  uncertainty,  but also critical in obtaining the 
correct  qualitative  position. 

6 Sensor uncertainty field 

The sensor  uncertainty field is a concept  introduced 
by Takeda et al. [12]. This field is the expectation of 
the distribution of error  in  the sensed  robot  position 
as a function of the  robot location.  While,  in  general, 
the  uncertainty will depend  on the  path  taken  to each 
position, we will consider the uncertainty only as a 
function of the  robot position. 

We can, of course,  compute the sensor uncertainty 
field using a brute-force  method, where the best  land- 
mark is selected for each  location of the  robot  and  the 
resulting  expected  uncertainty is stored for each. Un- 
fortunately,  this process would require much compu- 
tation. Note, however, that  the uncertainties  change 
slowly as  the  robot position that is examined is moved 
in the pose space. Our  strategy is to  first  sample the 
pose space at a coarse  resolution and  then examine 
locations of interest,  such  as  those that yield low un- 
certainties, at a finer resolution  subsequently. 

Figure 3 shows an example where a sensor uncer- 
tainty field  was generated for the  terrain shown in Fig- 
ure 2. As expected, lower uncertainties  occur  near 



Figure 3: Sensor  uncertainty field generated for the  terrain 
in  Fig. 2. Bright values correspond to low uncertainties. 

large  rocks. However, the uncertainty is increased at 
the location of the rocks,  since we use a method where 
the rock is not useful for localization if the robot is di- 
rectly  on top  it. 

7 Summary 

We have described  a  method to select the sens- 
ing  location for performing mobile robot localization 
through  matching  terrain  maps.  The localization 
method we use constructs a likelihood function  in the 
space of possible robot positions. The  uncertainty is 
estimated for localization using a local map by fitting 
a normal  distribution to  the likelihood function gen- 
erated. We select the best  landmark for localization 
by minimizing the expected  uncertainty in the  robot 
localization.  In  order to predict the uncertainty ob- 
tained by localization using various landmarks,  our 
method  constructs a probabilistic  representation of 
the  terrain  expected  to  be sensed at any position in 
the global map.  Treating  the  patches of this “proba- 
bility mapping” of the  terrain  as a local map allows 
the uncertainty  expected by sensing the  terrain  patch 
to  be estimated using the surface  fitting  techniques. 
We have applied this technique to  robot localization 
in rocky terrain  with excellent results. 
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